If it's not what You are looking for type in the equation solver your own equation and let us solve it.
4x^2-12=50
We move all terms to the left:
4x^2-12-(50)=0
We add all the numbers together, and all the variables
4x^2-62=0
a = 4; b = 0; c = -62;
Δ = b2-4ac
Δ = 02-4·4·(-62)
Δ = 992
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{992}=\sqrt{16*62}=\sqrt{16}*\sqrt{62}=4\sqrt{62}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-4\sqrt{62}}{2*4}=\frac{0-4\sqrt{62}}{8} =-\frac{4\sqrt{62}}{8} =-\frac{\sqrt{62}}{2} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+4\sqrt{62}}{2*4}=\frac{0+4\sqrt{62}}{8} =\frac{4\sqrt{62}}{8} =\frac{\sqrt{62}}{2} $
| z*z*z−27=0 | | 3x+10(1.5)=24 | | 4x-6-×=5(×+2) | | (9x-31)÷2=43 | | 8x+2+8x+2+80=180 | | -4(2x+3)=6x-40 | | y=(6)+5 | | 8-4(2x-1)=4(x-1) | | (3x+20)=(5x-40) | | 1/4x=-2/3 | | F(x)=(3/4)x | | 3x-39=-6(x+2) | | -3(x+4)^2+24=0 | | 16-a=-3 | | N+(n+1)+(n+3)=15 | | 7(5x+1)=-98 | | 4+3(-1)+1=-2(-1)x-4-4(-1) | | 5-4p-p=15 | | r/10-8=1 | | x+48+x+66+74=180 | | -6a-7(1+a)=-8a+23 | | x^2+5x=116 | | 16x+x+6x−–14=–9 | | 9(2x-6)-x= | | 24x+75+57=180 | | 1/3(3/20x)=(3) | | 1.3x+72.6=-1.82x+80.4 | | 4+5n-2=-3 | | x+59+80+50=180 | | 14x+75=29x+30 | | 9x²+6x+1=0 | | -2(x+10)= |